Tesla’s got some competition

Of course, the Tesla isn’t the only high-performance EV out there, nor was it the first (see Venturi Fetish, Wrightspeed X1), but it certainly was the first to capture the attention of the mainstream media.  Undoubtedly, it has changed many people’s perceptions of what an electric car can be.

Lucky for Tesla, the car pictured above, the Lightning GT, will be staying on the other side of the Atlantic.  Made by the Lightning Car Company, and using Altairnano NanoSafe batteries, the 700bhp coupe is now available for pre-order, with the first deliveries arriving in 2008. The coupe will also be available with a range extender (think the Chevy Volt).  The chassis is made of a carbon fiber/aluminum honeycomb composite monocoque, but its actual weight has not yet been disclosed.
The Lightning GT uses four 120kW wheel motors made by PML Flightlink.  These Hi-Pa Drive motors were also used in the 640hp EV Mini Cooper featured on green.mnp a few months back.  Lightning writes on its website that “all of the power is generated at the wheel, the point at which it is required, which eliminates mechanical complexity and power losses experienced in standard sports cars.  These lightweight and ultra powerful motors do not add significant extra unsprung weight and are therefore ideal in that position.”  A few days after the Lightning started making its rounds on the internet, the Director of Public Relations at Tesla addressed such hub-mounted motors on the company’s blog:

Without digressing too much, I’d like to tackle a reoccurring question because it dovetails perfectly with a discussion of driving dynamics. “Would four hub-mounted motors have made for a better Tesla Roadster?” In a word: no. Four hub-mounted motors would work great in an electric off road vehicle or rally car – power to each wheel could be controlled for mud, ice, and gravel along with the hill control feature used in off-roading. In a sports car, the added weight and complexity would have compromised the driving enjoyment that makes a sports car a driver’s delight.

The weight that engineers most worry about is rotating mass. In other words, anything that goes round and round as the car moves. This includes components like the wheels, tires, brake rotors, and even the lug nuts. Besides the gyroscopic forces that a spinning wheel assembly represents as a car turns, this is mass that needs to be spun up to speed for acceleration and slowed back down again for braking. More mass here means relatively slower acceleration and braking.

So who’s right?  We’ll have to wait for each car to reach production.  In all likelihood, each is probably right to some extent – almost every car company out there has a different philosophy in terms of engines (i.e. displacement vs. forced induction; inline 6′s vs V-6′s, and let’s not forget about horizontally-opposed boxer engines either), and engine placement and weight distribution (front-engine rear wheel drive vs. mid-engine rear wheel drive vs. rear-engine, rear wheel drive vs front-engine all-wheel drive…)  The real issue is how the individual manufacturer executes their philosophical belief in the specific model.

The other thing to consider; price.  The Tesla is going to retail for a little shy of $100,000, whereas the Lightning GT will cost almost three times that (£150,000).  We already know Tesla has big plans for EV’s, and is trying to bring them to mass-market, with plans for a dealer network and a sports-sedan.  Perhaps Lightning is set on becoming and remaining a boutique EV manufacturer…

More at the Lightning Car Company

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>